The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein.
نویسندگان
چکیده
AvrXa7 is a member of the avrBs3 avirulence gene family, which encodes proteins targeted to plant cells by a type III secretion apparatus. AvrXa7, the product of avrXa7, is also a virulence factor in strain PXO86 of Xanthomonas oryzae pv. oryzae. Avirulence and virulence specificities are associated with the central repeat domain, which, in avrXa7, consists of 25.5 direct repeat units. Mutations in three C-terminal nuclear localization signal motifs eliminated avirulence and virulence activities in rice and severely reduced nuclear localization in a yeast assay system. Both pathogenicity functions and nuclear localization were restored on the addition of the sequence for the nuclear localization signal motif from SV40 T-antigen. The loss of avirulence activity because of mutations in the acidic transcriptional activation domain was restored by addition of the activation domain from the herpes simplex viral protein VP16. The activation domain was also required for virulence activity. However, the VP16 domain could not substitute for the endogenous domain in virulence assays. In gel shift assays, AvrXa7 bound double-stranded DNA with a preference for dA/dT rich sequences. The results indicate that products of the avrBs3-related genes are virulence factors targeted to host cell nuclei and have the potential to interact with the host DNA and transcriptional machinery as part of their mode of action. The results also suggest that the host defensive recognition mechanisms are targeted to the virulence factor site of action.
منابع مشابه
Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14‐inducing TAL effectors
As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv. oryzae (Xoo) injects into the plant cell DNA-binding proteins called transcription activator-like effectors (TALEs) that bind to effector-binding elements (EBEs) in a sequence-specific manner, resulting in host gene induction. TALEs AvrXa7, PthXo3, TalC and Tal5, found in geographically distant Xoo strains, all t...
متن کاملRice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3.
The rice (Oryza sativa) gene xa13 is a recessive resistance allele of Os-8N3, a member of the NODULIN3 (N3) gene family, located on rice chromosome 8. Os-8N3 is a susceptibility (S) gene for Xanthomonas oryzae pv oryzae, the causal agent of bacterial blight, and the recessive allele is defeated by strains of the pathogen producing any one of the type III effectors AvrXa7, PthXo2, or PthXo3, whi...
متن کاملKetoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae.
The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99(A) and localizes to the ho...
متن کاملRaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, one of the most serious diseases in rice. X. oryzae pv. oryzae Philippine race 6 (PR6) strains are unable to establish infection in rice lines expressing the resistance gene Xa21. Although the pathogen-associated molecule that triggers the Xa21-mediated defense response (AvrXa21) is unknown, six rax (required for AvrXa2...
متن کاملCell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae
Innate immune responses are induced in plants and animals through perception of Damage Associated Molecular Patterns. These immune responses are suppressed by pathogens during infection. A number of studies have focussed on identifying functions of plant pathogenic bacteria that are involved in suppression of Pathogen Associated Molecular Pattern induced immune responses. In comparison, there i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 17 شماره
صفحات -
تاریخ انتشار 2000